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1. Introduction

Even though a theory with extra dimensions must allow gravitons to propagate in all

directions, four-dimensional gravity can apply even with infinitely large extra dimensions

if they are sufficiently warped [7]. There are many ways of understanding this result

but from the four-dimensional perspective, the higher-dimensional graviton will appear

as a tower or spectrum of four-dimensional graviton fields with different masses, similar

to the usual Kaluza-Klein case. The spectrum is gapless and continuous and contains a

normalizable zero mode (or almost zero mode) that dominates the gravitational potential.

While this mechanism is simplest for a single codimension-one brane, it has been generalized

to higher codimension [2, 5, 6]. Such setups are appealing since string theory motivates a

ten-dimensional spacetime, which would make the visible universe a codimension-six brane.

It was recently pointed out [1] that a generic ten-dimensional FRW cosmology would be

dominated by 3-branes and 7-branes. While a 3-brane in this universe would not generally

exhibit 4D gravity, the intersection of three 7-branes might. Each 7-brane is codimension-2

– 1 –



J
H
E
P
0
1
(
2
0
0
6
)
1
1
3

and can localize gravity to itself [2]. Intuitively, then, gravity might be localized to the

intersection, as Ref. [5] showed for the codimension-1 case. Moreover, we generically expect

three 7-branes to intersect over a four-dimensional spacetime surface in ten dimensions.

In this paper , we focus on the triple 7-brane intersection and show that it can localize

four-dimensional gravity. We first construct our solution explicitly and then, using the high

degree of symmetry of our construction, demonstrate how to extract the tension relations

about the thickened branes in terms of the known external metric and a few parameters

of the interior metric of the brane. In particular, we find the necessary tuning relations

and show that for a flat four-dimensional universe we do not require an extra tensionful

brane at the intersection. We calculate the graviton potential and show that gravity is

localized on the intersection. In an appendix, we present the explicit construction for the

same setup with AdS4 or dS4 on the intersection and calculate the leading cosmological

constant (c.c.)-dependent term.

It might seem surprising that we can find exact tension relations for codimension-2

branes and their intersections, given that the codimension-2 branes should be treated as

thick branes, and you would expect the tension relation to depend on the precise form

of the metric on the interior. However, we will demonstrate that one can apply Stoke’s

theorem to relate the AdS curvature to the tension on the boundary. Our calculation in fact

generalizes the surprising fact already seen in [2 – 4] that the tension relations depended

only on boundary conditions and not on the detailed form of the interior metric of a

codimension-2 brane. There is a subtlety in that we also need to take into account an

interior contribution which amounts to an internal surface that depends on only a few

boundary condition parameters. To apply Stoke’s Theorem, we need to account for the

curvature at a singularity and we show how to do this in the text.

2. Review of the Gherghetta-Shaposhnikov construction

The authors (GS) of [2] demonstrated that gravity can be localized on a codimension-2

brane. They considered a codimension-2 Minkowski 4-brane embedded in AdS6, whereas

our construction uses 7-branes in AdS10, each of which individually is codimension-2. In

some sense, gravity in the GS construction is localized in only one of the two extra dimen-

sions whereas the second of the two extra directions is compact, although it is finite-sized

only because of the AdS space. The precise form of the corrections to Newton’s Law depend

on the resolution of the singular geometry at infinity [12].

Explicitly, one can write the GS metric as

ds2 = σ(ρ)ηµνdxµdxν − dρ2 − γ(ρ)dθ2 , (2.1)

where the 3-brane is located between ρ = 0 and ρ < l. Inside the 3-brane, the solution is

unknown, but outside the 3-brane the solution is

ds2 = e−2kρηµνdxµdxν − dρ2 − R2
0e

−2kρdθ2 . (2.2)

Since the warping does not depend on the sixth GS dimension, for the purpose of

finding a consistent metric, it is best to think of it as an additional flat dimension, rather
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than a warping direction. This dimension is distinguished from the four infinite dimensions

only by the periodic boundary condition that is imposed. The radius is not a parameter

however since the radius at the brane boundary is determined by Einstein’s equations.

GS put in T µ
ν = diag(fν) and found two relations,

(σσ′√γ)′ = −1

2

√−g
(

Gρ
ρ + Gθ

θ

)

(2.3)

(σ2(
√

γ)′)′ = −√−g

(

G0
0 +

1

4
Gρ

ρ −
3

4
Gθ

θ

)

. (2.4)

This in turn led to tension relations for their string-like solution regardless of details of the

brane, since the LHS of both relations above is a total derivative that can be integrated

over the brane. The fact that such a trick was possible depended on the terms σ′, γ′

arising in Gµ
ν only in certain linear combinations. This apparently remarkable coincidence

becomes even more remarkable as the number of extra dimensions increases and similar

relations continue to hold. We shall find that such relations are not coincidental but rather

are guaranteed to exist by the symmetries of the setup.

3. Holographic interpretation of higher codimension geometries

We will not use the precise form of the holographic description but it is helpful to have

a qualitative picture of the holographic interpretation of the AdS theory when the codi-

mension is greater than one in order to understand how these constructions are possible in

principle.

We will first think about the codimension-2 Gherghetta-Shaposhnikov example. That

case is rather easy to interpret because one of the dimensions has periodic boundary con-

ditions, making it act essentially like a compact dimension from the perspective of the

holographic interpretation. At any given value of z, the radial coordinate, there is only a

finite sized circle. Although the circle grows to infinite size in coordinate units, it is always

finite size due to the AdS warp factor. This corresponds to what Ponton and Poppitz

found [12] when they resolved the singularity. The corrections to Newton’s Law were never

of the form you would find with two infinite directions, but corresponded instead to the

corrections you would find with either one infinite dimension or no infinite dimension at all

(when they cut off the singularity). In both cases, they considered the dual interpretation,

which was either a lower-dimensional CFT or a CFT with a cut-off.

Although it looks quite different, the case of intersecting branes should behave holo-

graphically as well. The point is that one can again choose a single warping direction (in

this case, the sum of the directions perpendicular to each brane). Again, at each point

along this infinite direction, the cross section is finite in size. This is because one only

sees a sector of AdS due to the boundary intersecting branes. Clearly, our example, which

combines together these ideas, behaves in the same manner. There is an effectively com-

pact space fibered over a “holographic” direction. The dual theory should be a broken

conformal field theory, since the transverse space is not a fixed size. It would be interest-

ing to investigate the dual theory to intersecting codimension-1 and codimension-2 branes

further, since the theories are distinct from AdS spaces that have already been studied.
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4. Metric

We choose conventions such that ηµν has signature (+,−,−,−) and

RAB − 1

2
gABR = gABΛ +

1

M8
10

TAB . (4.1)

For simplicity, we impose a symmetry in the exchange of any two branes, and assume

that the setup is azimuthally symmetric around each individual brane. We thus make the

ansatz1

ds2 = σ(~z)g(4)
µν dxµdxν −

∑

i

(

ξi(~z)dz2
i + βi(~z)dy2

i

)

(4.2)

where zi is the direction normal to the i−th brane and yi is its angular direction.

At this point, we choose to smooth out the string over some arbitrarily small distance

ε. The metric inside the brane is unknown and depends on the distribution of energy-

momentum on the thickened brane. We will be interested in the limit as the thickness of

the brane becomes arbitrarily small, but never zero. A brane with truly vanishing thickness

must have tension proportional to its induced metric, so in particular T yi
yi for the i-th brane

would vanish. However, a large T yi
yi component is necessary for the stabilization of the

extra dimensions. Thus, we are led to take the thickness of the brane arbitrarily small at

the end of our calculations, and not before.

The boundary conditions that avoid a singularity at the center of each thickened brane

are [8, 3, 4]

∂z1
σ = 0 σ(0, z2, z3) = A(z2, z3) (4.3)

∂z1
ξ1 = 0 ξ1(0, z2, z3) = B(z2, z3) (4.4)

∂z1
β1 =

√

B(z2, z3) β1(ε, z2, z3) ∼ ε
√

B(z2, z3) (4.5)

and symmetrically for branes 2 and 3. The functions A and B have finite first deriva-

tives and are symmetric in z2 ↔ z3, but otherwise generic. To construct solutions in the

bulk, we recall the usual procedure of cutting and pasting AdS space along perpendicular

codimension-one branes, as in e.g. [5, 9].

ds2 =
1

(k
∑3

i=1 |zi| + 1)2

(

ηµνdxµdxν −
3

∑

i=1

dz2
i

)

(4.6)

where zi is the direction perpendicular to the brane i, respectively, and k is related to the

cosmological constant (c.c.) Λ in the bulk. This corresponds to a c.c. in the bulk and

a tensionful brane at zi = 0 for each zi. We would like something similar to this, but

1More generally, we might want to have dzidzj terms, but this will not affect the following discussion.
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with codimension-2 branes. The metric in the bulk from a single codimension-2 brane,

from [2], is

ds2 = e−2kρηµνdxµdxν − dρ2 − R2
0e

−2kρdθ2 , (4.7)

where θ ∈ [0, 2π]. With the change of variables kz + 1 = ekρ and θ = y/R0(kz + 1), this

takes the form

ds2 =
1

(kz + 1)2
(

ηµνdxµdxν − dz2 − dy2
)

, (4.8)

where y ∈ [0, 2πR0]. For codimension-2 branes, then, instead of cutting and pasting AdS

along the branes as in (4.6), we “wrap” AdS around the branes as in (4.8):

ds2 =
1

(k
∑

i |zi| + 1)2

[

g(4)
µν dxµdxν −

∑

i

(

dz2
i + dy2

i

)

]

. (4.9)

This is conformal to a flat metric (gµν = Ω2ηµν) with conformal factor Ω ≡ 1/(k
∑

i |zi|
+1)2. From the bulk Einstein equations, we find the parameter k is determined from Λ,

the c.c. in the bulk, according to k2 = − 2
n(D−1)(D−2)Λ = − 1

108Λ, where in this case D = 10

and n = 3.

The Planck scale Mp on the intersection is

M2
p = M8

10

∫

volume
d6xΩ−2

√
Ω20

= M8
10

∫

dz1dz2dz3dy1dy2dy3

(k (|z1| + |z2| + |z3|) + 1)8

= M8
10

(2πR0)
3

210k3
. (4.10)

We note here that we assume there are three perpendicular codimension-2 branes. In

order for this to be a stable configuration, there must be some stabilization mechanism for

the angle between the branes. This angle affects the four-dimensional Planck mass on the

intersection and thus acts as a Brans-Dicke field. In order to stabilize any given angle, we

need interactions between the branes. These will in general also contribute to the tensions

and affect the tension relations we will find. This is also an issue for the codimension-

1 branes. These are essential issues but we leave them for later and assume stationary,

perpendicular, and non-interacting branes.

We now derive a very useful formula based on the symmetries of our setup. Let us

consider the general case of a metric that does not depend on some number of directions

Xa. For each direction Xa that the metric does not depend upon, we have a killing vector

Kµ = (∂Xa)
µ. Its norm is

√

|K2| =
√

|gaa|. Further, if the metric is independent of the

direction Xa, then the symmetry Xa ↔ −Xa implies gµa = 0 for µ 6= a. Thus,

∇2 log
√

gaa =
1

2
∇A∇A log(KBKB)

= ∇A

(

KB∇AKB

K2

)
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= −∇AK2

(K2)2
(KB∇AKB) +

1

K2
∇A(KB∇AKB)

= −2(KB∇AKB)(KC∇AKC)

(K2)2
+

(∇AKB)(∇AKB) + KB∇A∇AKB

K2

= −KAKBRAB

K2
+

1

(K2)2
[

(K2)(∇AKB)2 − 2((KB∇B)KA)2
]

, (4.11)

where in the last step we have used ∇(AKB) = 0 and ∇A∇BKA = RABKA . Since

Kµ = (∂Xa)
µ = δµ

a , the first term is −Ra
a and the bracketed term vanishes. Thus, for

each direction Xa that the metric does not depend upon, we have (no implied sum over a)

Ra
a = −∇2 log

√
gaa . (4.12)

Equation (4.12) holds at all points that K2 6= 0. In the Newtonian limit in a 4D Minkowski

background, the case xa = x0 = t reduces immediately to 4πGρ = ∇2Φ, since log
√

g00 ≈
1
2h00 = −Φ. Eq (4.12) is essentially Poisson’s equation with the tension T µ

ν acting as a

linear source for log gaa. We have not linearized gravity yet; the gAB appearing in equation

(4.12) is the full background metric. Thus, by Gauss’ law we can extract information about

the tension on the brane by knowing about the physics away from the brane. We will use

this to our advantage in the following analysis.

We now understand why in the one-brane case it was possible to find tension relations

without knowing the detailed distribution of the energy-momentum tensor on the thickened

brane. Equation (4.12) depends only on the symmetry of the setup, and is true in general

whenever the metric does not depend upon a direction Xa. To show more explicitly how

this leads to the relations in [2], we can rewrite equation (4.12) as

Ra
a = − 1√−g

∂A

(√−ggAB∂B log
√

gaa

)

(4.13)

and the relations (2.4) as

−∂ρ

(√−ggρρ∂ρ log gtt

)

= 2
√−gRt

t (4.14)

−∂ρ

(√−ggρρ∂ρ log
√

gθθ

)

=
√−gRθ

θ (4.15)

5. Finding tension relations with Stokes’ theorem

5.1 Tension components

To find the solution to Einstein’s equations, we need to find the relationship between the

bulk energy momentum tensor and the tensor components on the brane. In the case of

codimension-2 branes, this might seem an impossible task since the metric for a string-like

defect changes over the string meaning that in general one deals with a thick defect. If

you take the infinitely thin string, the metric is discontinuous and physical properties can

depend on how the limit is taken [11]. However, we will see that the tension relationships

involve only integrated tension as well as a few boundary parameters. This follows from

Stoke’s theorem applied to our system.
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Let us suppose that the branes have some energy-momentum tensor T µ
ν = diag(fi(~z)),

with f0 = . . . = f3.

The quantities of interest to us are the tension components, defined as

µa ≡
∫

d6x
√−gfa (5.1)

integrated over all three branes. We can write this suggestively as

1

M8
10

(

µa −
1

8

10
∑

A=1

µA

)

=

∫

d6x
√−gRa

a (5.2)

with no summation over a. Thus, knowledge of a component of Rµ
ν , or even just its

integral, gives us a relation among the tension components. Equation (4.12) then gives us

four tension relations, one each for a = t, θ1, θ2, θ3. In each of those cases, Ra
a is a total

derivative, and thus its integral only depends on the metric at the outside boundary of the

brane. Thus, we should be able to derive four tension relations. We will see that this is

the case, though the tension relations include a constant that depends on the metric at the

center of the branes. A similar constant appears in the tension relations in the case of a

single codimension-2 brane in six dimensions [2]. However, in that case, the constant was

simply the value of the g00 component of the metric at the center of the brane, whereas

our constant will be an integral along the centers of the branes.

5.2 The centers of the branes

We now encounter a subtlety in applying equation (4.12) to our setup. The essential point

is that equation (4.12) only holds when gaa 6= 0, so at the center of each brane it fails to be

true. At such points, our derivation fails because we divide by gaa = K2 in several places.

We would like to know what to replace it with. The RHS, −1
2∇2 log K2, is easily seen using

Gauss’ Law to be proportional to
∑

δ(zi)∇zi
K2. The Ricci tensor is more complicated.

Consider first a simple example for a thickened string:

ds2 = dt2 − dz2 − dr2 − β2(r)dφ2 (5.3)

β(r) = (l/γ) sin(rγ/l) r < l , (5.4)

where this is matched onto a flat geometry at r > l. A quick calculation gives Rφ
φ = β′′

β =

−γ2

l2 and
∫ l
0 dr

∫ 2π
0

√−gRφ
φ = 2π(β′(l) − β′(0)) = 2π(cos(γ) − 1). We could take equation

(4.12) literally and convert

∫

r<ε
drdφ

√−gRφ
φ = −

∫

r<ε
drdφ

√−g∇2 log β (5.5)

into a surface integral at r = ε, giving 2π cos(γ). This clearly conflicts with the correct

answer.

Of course, the reason for the conflicting answer is that we have integrated equation

(4.12) over a region including the point r = 0. At this point, gφφ = 0. The correct

way to apply (4.12) to the LHS of (5.5) is to evaluate the contributions from the point

– 7 –
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r = 0 and from the points 0 < r < ε separately. We can correctly use (4.12) to turn
∫

0<r<ε drdφ
√−gRφ

φ into a surface integral. This surface integral is now over the two

boundaries (r = 0 and r = ε) of the region 0 < r < ε. The contribution from the interior

boundary is −2π, exactly the term missing earlier. We still should include the contribution

from the point r = 0, but this is trivial; its contribution is zero. The reason is that the

metric (5.3) avoids a δ-function singularity at the center of the thickened string as long as

β satisfies the boundary condition β′(0) = 12.

The above example contains the essential idea behind the procedure we will apply to

our thickened 7-branes. We chose our boundary conditions (4.3)-(4.5) specifically to avoid

a singularity at the center. Of course, generic boundary conditions at the center of the

branes will give rise to singularities. In section 6, we derive the form of such singularities in

order to demonstrate that our boundary conditions do indeed set them to zero. Physically,

these boundary conditions correspond to the fact that we are dealing with thickened branes,

so that the tension is smeared out over a small but finite length. Thus, equation (4.12)

holds everywhere except for r = 0, where the LHS is finite but the RHS is singular.

5.3 Tension relations

In light of the previous discussion, the proper procedure should now be clear. We are

interested in the integral of Ra
a over the entire brane. We split this integral up into two

regions, Mcenter and M , where Mcenter is an arbitrarily small open set around r = 0. M

covers the rest of the brane. We have argued that the integral over the Mcenter vanishes

since our boundary conditions set R to be regular. M now contains all points on any of the

branes except for their centers. The boundary ∂M of M therefore contains both an outer

surface ∂Mouter and an inner surface ∂Minner. We will use Stokes’ theorem to convert the

volume integral over M into a surface integral over ∂M . We will find that the surface

integral over ∂Minner does not vanish in all cases3. Take γ to be the induced metric on

∂M , and nA the unit outward normal vector to ∂M . Integrating both sides of Einstein’s

equations over M gives

1

M8
10

(µa −
1

8

10
∑

A=1

µA) = −
∫

M
d6x

√−g∇A∇A log
√

gaa

= −
∫

∂M
d5x

√−γnA∇A log
√

gaa (5.6)

= −3
(2πR0)

3

56k
− 3(2πR0)

3

∫

dz2dz3

[ √−γ
√

B(z2, z3)

∂z1

√
gaa√

gaa

]

z1=0

.

For convenience, we define Da ≡
∫

dz2dz3

[ √−γ√
B(z2,z3)

∂z1

√
gaa√

gaa

]

z1=0

, the surface integral over

2If β′(0) = 1, the metric is locally Minkowski space near r = 0.
3This is a distinctly different integral from the volume integral over Mcenter. The integral over Mcenter

is a volume integral and only has contributions from the tension inside Mcenter . The integral over ∂Minner ,

however, is an integral of the flux through a surface and gets contributions from the tension on the entire

brane.
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∂Minner inside the first brane. The boundary conditions (4.3)-(4.5) imply that D0 = 0.

This leaves us with only one unknown integral, Dθ1
= Dθ2

= Dθ3
≡ Dθ.

After some simplification, (5.6) can be rewritten as follows:

µθ1
= µθ2

= µθ3
≡ µθ (5.7)

µ0 = µθ + 3(2πR0)
3Dθ (5.8)

1

M8
10

(
1

2
µ0 −

3

8
µθ −

1

8

3
∑

i=1

µzi
) = −3

(2πR0)
3

56k
(5.9)

The compactification scale R0 is determined from the components of the tension ac-

cording to eq (5.9). Eq (5.8) indicates a tuning-condition of the tension components. Notice

that this depends only on the metric at the center and exterior surface of the brane, but

not on the metric in between. This is similar to the well-known behavior of the potential

outside a distribution of electric charge. In GR, though, there can be different tensions on

a codimension-2 brane which correspond to the same solution outside the brane (see [11]

for a thorough discussion). The above relations among those tensions, however, do not

suffer from the same ambiguous behavior.

The metric on the intersection of the branes does not have to be Minkowski space, and

we can ask how the above relations change if the intersection is dS4 or AdS4 space with a

four-dimensional Λphys. Λphys is defined by R
(4)

µν − 1
2g

(4)
µνR(4) = g

(4)
µνΛphys. Λphys can

be tuned to zero by tuning the tensions and R0 to satisfy equation (5.9). Instead of tuning

Λphys to be zero, we can allow it to be small but non-zero, in which case the metric will

have a more complicated dependence on ~z. In appendix B, we produce the appropriate

metric and calculate the modification to (5.6), but in fact it can be deduced by dimensional

arguments. As Λphys approaches zero, we must recover (5.6) above. Furthermore, Λphys

has units of (mass)2, and the only other dimensionful quantities around are k and R0. By

azimuthal symmetry, the new contribution must have the same factor of (2πR0)
3. The

only modification in the tension relations is in equation (5.9):

1

M8
10

(
1

2
µ0 −

3

8
µθ −

1

8

3
∑

i=1

µzi
) = −3

(2πR0)
3

56k
(1 − cΛ

Λphys

k2
) (5.10)

where cΛ is some constant ∼ O(1).

5.4 Tensions at the intersection of branes

We can now ask, in the limit of arbitrarily thin branes, what equation (4.12) tells us about

the tensions where two or more branes intersect. We make the replacement

fA(~z) →
3

∑

i=1

µ(i)δε(zi) +
∑

i6=j

µ
(ij)
A δε(zi)δε(zj) + µ

(123)
A δε(z1)δε(z2)δε(z3) (5.11)

where we are leaving open for the moment the possibility that there is some tension as-

sociated with the intersections of the branes. The δε functions are, of course, not true
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δ-functions, but are smeared out over the brane thickness ε, which we take to be arbitrarily

small.

We will see that, for local branes with µzz = 0, the tensions of the intersection will

vanish. One might expect this a priori. In [9], the author studied two intersecting codim-1

branes and found that the tension on the intersection vanished precisely when the branes

met at right angles. To see this explicitly for our case, we again use Gauss’ law but this

time with two (three) of the radial directions zi at an arbitrarily small distance ε to study

the intersection of two (three) branes.

To study the intersection between two branes, begin by taking a small six-dimensional

volume around branes 1 and 2 defined by

V ≡ {xµ ∈ M | |z1| + |z2| < ε} (5.12)

Σ ≡ ∂V = {xµ ∈ M | |z1| + |z2| = ε} . (5.13)

Define coordinates {xµ, w, z3, yi} on Σ with w = z2 − z1. Then, on Σ, z1 = ε − z2 =
ε−w

2 , z2 = w+ε
2 . Since γij = ∂xµ

∂yi
∂xν

∂yj gµν , where γ is the induced metric on Σ, we have

γAB = gAB component by component and γww = 1
4(ξ1 + ξ2). The normal vector to Σ is

nA =
(∂z1 )A+(∂z2 )A

√
ξ1+ξ2

and thus the integral of Ry1

y1
over V is

∫

V
d6x

√
gRy1

y1
= −

∫

dz3Ω
6 1

2
√

2
(∂z1

Ω + ∂z2
Ω) (2πR0)

3
∫ ε

−ε
dw

+
1√
2

∫

dz3A
2B2

√

ξ3β3ε

∫ ε

−ε
dw

ε→0−→ 0 (5.14)

So Ry1

y1
contains no product of δε-functions. R0

0 vanishes similarly, and the integrals over

the triple intersection vanish even more quickly since the volume shrinks faster. We would

expect this situation to change if we added a stabilizing potential or interactions between

the branes. Perhaps the least complicated correction to this is that, when the branes form

oblique angles with each other, the metric should have explicit factors of cos(yi). These

have implicit jumps at zi = 0, thereby introducing δ-functions under the integral of eq

(5.14).

The vanishing of (5.14) implies further that the tension on the triple intersection

vanishes. We already know that by conservation of energy, µ
(123)
zi is zero. Thus, the

analogues of eq’s (5.8) and (5.9) imply µ
(123)
0 = µ

(123)
θ = 0.

6. Curvature at singularities

We will now derive a formula for δ-function singularities at the origin for spacetimes with

rotational symmetry. We want to know the value of Ra
a where one of the radial coordinates

z vanishes. At such a point, the metric is degenerate and all values of y correspond to the

same point in space-time. At a non-degenerate point, the Riemann tensor depends on the

change in a vector as it is parallel transported around a loop with four sides, as in figure 1.
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Figure 1: A vector va is parallel transported around a closed loop. Usually, the loop will have

four sides, two for constant r and two for constant φ, but at the origin there are only three sides.

At a degenerate point, however, there are only three sides. We can take φ = y/R0, so that

φ ∈ [0, 2π]. Parallel transporting a vector va around such a loop gives, with

δvd = δ3 + δ1 + δ2 (6.1)

= −
(

dz∂zv
d
)

(dz/2,dφ)
+

(

dz∂zv
d
)

(dz/2,0)
+

(

dφ∂φvd
)

(dz,dφ/2)
(6.2)

=

[

(

dzΓd
zbv

b
)

(dz/2,dφ)
+

(

−dzΓd
zbv

b
)

(dz/2,0)

]

+
(

−dφΓd
φbv

b
)

(dz,dφ/2)
(6.3)

=

[

dzdφ∂φ

(

Γd
zbv

b
)

(dz/2,dφ/2)

]

−
(

dφΓd
φbv

b
)

(0,dφ/2)
− dφdz∂z

(

Γd
φbv

b
)

(dz/2,dφ/2)
(6.4)

= dzdφ
(

∂φΓd
zb − ∂zΓ

d
φb + Γd

φeΓ
e
zb − Γd

zeΓ
e
φb

)

vb − dzdφδ(z)Γd
φbv

b (6.5)

Thus, the Riemann tensor is

R d
zφb =

(

∂φΓd
zb − ∂zΓ

d
φb + Γd

φeΓ
e
zb − Γd

zeΓ
e
φb

)

− δ(z)Γd
φb + ∆ d

b (6.6)

The term ∆ d
b , which we derive below, is required in order to rotate the basis vectors (∂z)

a

and (∂φ)a back to their original position.

A passive clockwise rotation, to undo the rotation along δ2, will take

(∂z)
a

√

|∂z|2
→ cos(dφ)

(∂z)
a

√

|∂z|2
+ sin(dφ)

(∂φ)a
√

|∂φ|2
(6.7)

(∂φ)a
√

|∂φ|2
→ cos(dφ)

(∂φ)a
√

|∂φ|2
− sin(dφ)

(∂z)
a

√

|∂z|2
(6.8)

Thus, va = 1
gzz

(

(∂z)bv
b
)

(∂z)
a + 1

gφφ

(

(∂φ)bv
b
)

(∂φ)a will go to

va + δva =
1

gzz

(

(∂z)bv
b
)

(

(∂z)
a + dφ(∂φ)a

√

gzz

gφφ

)

+
1

gφφ

(

(∂φ)bv
b
)

(

(∂φ)a − dφ(∂z)
a

√

gφφ

gzz

)

= va − dφ
1

√
gφφgzz

{[

(∂φ)bv
b
]

(∂z)
a −

[

(∂z)bv
b
]

(∂φ)a
}

(6.9)

– 11 –



J
H
E
P
0
1
(
2
0
0
6
)
1
1
3

which in turn implies

δva = dzdφδ(z)
1

√
gφφgzz

vb
{

gzbδ
a
φ − gφbδ

a
z

}

(6.10)

def
= dzdφvb∆ a

b (6.11)

Thus, the full Riemann tensor is

R d
zφb =

(

∂φΓd
zb − ∂zΓ

d
φb + Γd

φeΓ
e
zb − Γd

zeΓ
e
φb

)

− δ(z)Γd
φb − δ(z)

1
√

gφφgzz

{

gφbδ
d
z − gzbδ

d
φ

}

(6.12)

In an appendix, we apply this to the straight string metric

ds2 = dt2 − dz2 − dr2 − β2(r)dφ2 (6.13)

and we find that the contribution at r = 0 is
∫

dφ
√−gRφ

φ = 2πδ(r)(β′ − 1) (6.14)

Now, we can say more precisely why we cut out the center of the thickened branes.

Equation (4.12) is true except at the center of each brane, where the singular part of the

LHS can be calculated from equation (4.12). The singular pieces of the LHS and of the RHS

of (4.12) will not in general be equal. Thus, in order to take advantage of Stokes’ theorem,

we divided up the brane into two parts: away from the center, where (4.12) applies, and

at the center, where it does not. We then evaluated the integral over the former piece

using Stokes’ theorem and over the latter piece using equation (6.12). We claimed that the

contribution from the latter piece should vanish in our case. We can now see this explicitly.

R y1

z1y1z1
= −δ(z1)

[

Γy1

z1y1
+

1
√

gy1y1
gz1z1

(−gz1z1
)

]

(6.15)

so
√−gRz1

z1
= −δ(z1)β2β3σ

2
√

ξ2ξ3/ξ1

[

∂z1
β1 −

√

ξ
]

(6.16)

which vanishes under the boundary conditions (4.3)-(4.5). The other components of Rµ
ν

vanish similarly.

We have so far only discussed calculating the singularity of Rµ
ν at the origin for the

purpose of setting it to zero, but it is useful more generally. For instance, consider the

infinitely thin, straight string. It gives rise to a geometry that is locally flat except for a

deficit angle. In this case, there is an actual singularity at r = 0, and the interpretation

of Rµ
ν at r = 0 is quite different. Rather than enforcing some boundary conditions, the

singularity is the actual distributional energy-momentum tensor of the string. Explicitly,

take the metric (5.3) with

β(r) = (1 − 4Gµ)r (6.17)

This corresponds to a deficit angle ∆ = 8πGµ and an energy-momentum tensor T ρ
σ =

µδ(r)diag(1, 1, 0, 0). For this simple example, we can linearize gravity to calculate Rµ
ν =

−8πGµδ(r)(0, 0, 1, 1) explicitly [13]. In this case, equation (6.14) gives Rφ
φ = −8πGµδ(r),

as it must.
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7. Localization

In order to check that our construction localizes gravity to the 4-dimensional intersection of

the branes, we need to consider the spectrum of graviton modes. We can find the effective

potential for the graviton hµν in the usual way, by plugging hµν = Ω−(D−2)/2(~z)eip·xh̃µν(~z)

into

1√
g
∂A

(√
ggAB∂Bhµν

)

= 0 (7.1)

to get a Schrodinger wave equation for the graviton:
(

∂2 + m2 − V (~z)
)

h̃ = 0 , (7.2)

where V (~z) = 12 (∂zΩ)2

Ω2 + 4∂2
zΩ
Ω in the bulk, and we are using h̃ to represent any of its

components. Now, in the bulk ∂zi
Ω and ∂2

zi
Ω are trivially −kΩ2 and 2k2Ω3, respectively.

The value of ∂2
zΩ at the branes is a little more subtle, since

∂2|zi|
∂z2

i

= 2πR0δ(zi) (7.3)

To see this, compare the straightforward expansion ∇2Ω = −3k2DΩ + k
∑3

i=1
∂2|zi|
∂z2

i

with a

routine Gauss’ Law computation of the integral of ∇2Ω:
∫

|z1|=ε

√
g∇A∇AΩdz1dy1 =

∫

|z1|=ε

√
γnA∇AΩdy1 =−ΩD−1 1

Ω
(−Ω2k)

∂|z1|
∂z1

2πR0
ε→0−→ 2πR0k

and thus

V (~z) =
60k2

(k(
∑

i |zi|) + 1)2
− 8πR0k

k
∑

i |zi| + 1

∑

i

δ(zi) (7.4)

This is a volcano potential along each of the branes. The form of the volcano potential

is itself enough to indicate 4-D gravity on the intersection. Qualitatively, the potential is

nearly flat in the bulk, rises sharply as it approaches any of the branes, and turns and falls

into an infinitely deep potential well at the brane itself. This potential well is enough to

support our single bound graviton mode. All the light modes will be exponentially damped

as they tunnel through the potential barrier around the branes, leaving gravity essentially

four-dimensional at low energies. The more energetic the mode, the less tunneling it takes

to reach the brane, and at high enough energy (roughly, at about 7.7k, the peak of the

potential) an observer would see ten-dimensional gravity recovered. The δ-functions are

merely enforcing a boundary condition. To derive this boundary condition, we can isolate

the δ-function type terms in ∂2
z h̃ = ∂2|z|

∂z2 ∂|z|h̃+ ∂|z|
∂z

2
∂2
|z|h̃(|z|) = 2πR0δ

(2)(z)∂|z|h̃+∂2
|z|h̃(|z|).

The boundary condition is therefore

−4
k

k(|z2| + |z3|) + 1
h̃|z1=0 = ∂|z1|h̃|z1=0 (7.5)

and symmetrically for z2, z3. We note that the zero mode h̃0 = Ω4(~z) identically satisfies

these boundary conditions. This matching is trivial from the fact that h̃0 corresponds to

hµν = const, which clearly satisfies eq (7.1).

– 13 –



J
H
E
P
0
1
(
2
0
0
6
)
1
1
3

8. Conclusion

In this paper, we have constructed 4D gravity in ten dimensions out of 7-branes, essentially

as the intersection between three copies of RSII. Due to the symmetry of the setup, we can

generalize previous methods of relating the brane tension to the curvature of spacetime

outside the branes (e.g. [2, 4]) to extract information about the brane intersections. As

usual, there is a volcano potential with an exactly solvable zero mode, as well as a continuum

of massive modes.

In the course of our analysis we have derived some interesting features of Einstein’s

equations. We found that whenever the metric does not depend on a coordinate x, the

corresponding component of the Ricci tensor Rx
x is a total derivative −1

2∇2 log |gxx|. We

also found a formula for curvature singularities arising from the origin in polar coordinates.

We note that although we will demonstrate that gravity can be localized on the inter-

section of 7-branes, the filling fraction of the intersection will not in general be the most

likely place for our universe to form if the branes forming it are infinite in extent. However,

it could be competitive if they loop around and form loops or some similar configuration,

since such a setup would act like a 3-brane on larger scales. This requires further study

which we leave to further work. Here we show only that the scenario of ref. [1] can

consistently include four-dimensional gravity, even when no dimensions are compactified.
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A. δ(r) Contributions to curvature

We can calculate the singularity from equation (6.12) for straight string metrics:

ds2 = dt2 − dz2 − dr2 − β2(r)dφ2 (A.1)

The non-vanishing Christoffel symbols are

Γr
φφ = −ββ′ (A.2)

Γφ
φr = β′/β (A.3)

The curvature is thus

Rrr = R φ
rφr (A.4)

= −δ(r)

(

Γφ
φr +

1

β
(−grr)

)

(A.5)
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= −δ(r)

(

β′

β
− 1

β

)

(A.6)

Rφφ = −R r
rφφ (A.7)

= δ(r)

(

Γr
φφ +

1

β

(

β2
)

)

(A.8)

= δ(r)
(

−ββ′ + β
)

(A.9)

and thus
∫

dφ
√−gRr

r = 2πδ(r)
(

β′ − 1
)

(A.10)
∫

dφ
√−gRφ

φ = 2πδ(r)
(

β′ − 1
)

(A.11)

This is what one finds integrating R explicitly over a thickened string with β′ = 1 at

the center of the string and β′ above being the value at the edge of the thickened string.

Notice that the above terms vanish for minkowski space, β(r) = r, as they must.

B. Λphys 6= 0 Contribution to tension relations

The metric for n intersecting codimension-two branes in AdS4+2n with AdS4 on the inter-

section is

ds2 =
L2

(c(
∑

i zi) + L)2



∆(~z)gµνdxµdxν −
∑

i

dz2
i +

∑

ij

|Λphys|zizjdzidzj

∆(~z)

−
∑

i

(

1 − L|Λphys|
c

∑

j zj

n
± an

L|Λphys|
c

(nzi −
∑

j zj)

n

)2

dy2
i

)

(B.1)

∆(~z) = 1 + |Λphys|
∑

j

z2
j (B.2)

an =

√

1 +
nc2

|Λphys|L2
(B.3)

The c.c. on the intersection is −|Λphys| and the c.c. in the bulk is Λ = −1
2(D− 1)(D−

2)(n c2

L2 + |Λphys|). The warp factor for the 4D metric and for the angular directions have

been normalized to unity on the intersection. In the limit Λphys → 0, we recover the

Minkowski solution (4.9). To calculate the modified tension relations, we once again use

(4.12), as follows. The induced metric γ on the hyper-cylinder surrounding the first brane

is diagonal except for the block with the normal directions zi. This block has eigenvalues

{1, 1, . . . , 1, 1+z2

1
|Λphys|

1+|Λphys|
P

i z2

i

}, so we can easily evaluate det(−γ). Taking n = 3,

∫

d6x
√−gR0

0 = −(2πR0)
3

∫ ∞

0
dz2dz3

√−γnz1∂z1
log

√
g00

= −(2πR0)
3 c

L

∫ ∞

0
dz2dz3

(

L

c(z2 + z3) + L

)9
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×
(

1 + |Λphys|(z2
2 + z2

3)
)3/2

×
(

1 − L

c
|Λphys|

z2 + z3

3
± an

L

c
|Λphys|

−z2 − z3

3

)

×
(

1 − L

c
|Λphys|

z2 + z3

3
± an

L

c
|Λphys|

2z2 − z3

3

)

×
(

1 − L

c
|Λphys|

z2 + z3

3
± an

L

c
|Λphys|

−z2 + 2z3

3

)

(B.4)

The large-zi contribution to the integral is negligible since the integrand drops faster

than 1
(z2+z3)2 . Thus, in the small-Λphys-limit, we can neglect terms of order O(Λ2

phys).

Then, (B.4) is

∫

brane 1
d6x

√−gR0
0 = −(2πR0)

3

(

1

56k
− |Λphys|

420k3

)

(B.5)

and cΛ = 2/15 in eq (5.10).

There is another way that one might expect Λphys to enter the tuning relations. Aside

from the solution in the bulk depending implicitly on Λphys, the metric on the brane g
(4)
µν

certainly depends on Λphys. Consequently, R
(4)µ

ν − 1
2δµ

ν R(4) = Λphysδ
µ
ν will contribute to

the total RA
B − 1

2δA
BR. However, when we turn to our tension relations, everything is

integrated over the branes, whose thickness is only ε. The tension components fµ are

inversely proportional to ε whereas Λphys is not. Since ε is very small, this particular

contribution from Λphys will be negligible.

References

[1] A. Karch and L. Randall, Relaxing to three dimensions, Phys. Rev. Lett. 95 (2005) 161601

[hep-th/0506053].

[2] T. Gherghetta and M.E. Shaposhnikov, Localizing gravity on a string-like defect in six

dimensions, Phys. Rev. Lett. 85 (2000) 240 [hep-th/0004014].

[3] P. Bostock, R. Gregory, I. Navarro and J. Santiago, Einstein gravity on the codimension 2

brane?, Phys. Rev. Lett. 92 (2004) 221601 [hep-th/0311074].

[4] I. Navarro and J. Santiago, Gravity on codimension 2 brane worlds, JHEP 02 (2005) 007

[hep-th/0411250].

[5] N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and N. Kaloper, Infinitely large new

dimensions, Phys. Rev. Lett. 84 (2000) 586 [hep-th/9907209].

[6] T. Gherghetta, E. Roessl and M.E. Shaposhnikov, Living inside a hedgehog:

higher-dimensional solutions that localize gravity, Phys. Lett. B 491 (2000) 353

[hep-th/0006251].

[7] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999)

4690 [hep-th/9906064].

[8] E. Papantonopoulos and A. Papazoglou, Cosmological evolution of a purely conical

codimension-2 brane world, JHEP 09 (2005) 012 [hep-th/0507278].

– 16 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C161601
http://xxx.lanl.gov/abs/hep-th/0506053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C85%2C240
http://xxx.lanl.gov/abs/hep-th/0004014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C92%2C221601
http://xxx.lanl.gov/abs/hep-th/0311074
http://jhep.sissa.it/stdsearch?paper=02%282005%29007
http://xxx.lanl.gov/abs/hep-th/0411250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C84%2C586
http://xxx.lanl.gov/abs/hep-th/9907209
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB491%2C353
http://xxx.lanl.gov/abs/hep-th/0006251
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4690
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4690
http://xxx.lanl.gov/abs/hep-th/9906064
http://jhep.sissa.it/stdsearch?paper=09%282005%29012
http://xxx.lanl.gov/abs/hep-th/0507278


J
H
E
P
0
1
(
2
0
0
6
)
1
1
3

[9] N. Kaloper, Origami world, JHEP 05 (2004) 061 [hep-th/0403208].

[10] R. Wald, General relativity, The University of Chicago Press, Chicago, 1984.

[11] R. Geroch and J.H. Traschen, Strings and other distributional sources in general relativity,

Phys. Rev. D 36 (1987) 1017.

[12] E. Ponton and E. Poppitz, Gravity localization on string-like defects in codimension two and

the AdS/CFT correspondence, JHEP 02 (2001) 042 [hep-th/0012033].

[13] A. Vilenkin, Gravitational field of vacuum domain walls and strings, Phys. Rev. D 23 (1981)

852.

[14] W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83

(1999) 4922 [hep-ph/9907447].

– 17 –

http://jhep.sissa.it/stdsearch?paper=05%282004%29061
http://xxx.lanl.gov/abs/hep-th/0403208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C1017
http://jhep.sissa.it/stdsearch?paper=02%282001%29042
http://xxx.lanl.gov/abs/hep-th/0012033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD23%2C852
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD23%2C852
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4922
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C4922
http://xxx.lanl.gov/abs/hep-ph/9907447

